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a b s t r a c t 

Mobile devices are now pervasive to provide prolific services to the users meanwhile collect the infor- 

mation derived from the activities of the individuals with the onboard sensors. Classification and au- 

thentication are popular provided services of many mobile applications which have high probability to 

involve the sensitive information of the users. In this paper, we propose a new cloud-enabled and Privacy- 

preserving sparse representation classification ( P 2 -SRC) system to protect the privacy of both the “data 

contributors” and “application users” when cloud server is untrusted . Different from the state-of-the-art 

approaches which only consider the attacks on data values, our proposed system, P 2 -SRC , addresses mul- 

tiple types of privacy attacks including Content Privacy Attacks, Source Privacy Attacks and Label Privacy 

Attacks . As a result, besides the data values, in P 2 -SRC, the identities and activities of the users are also 

protected. According to our evaluations on two different classification applications (face recognition and 

activity recognition), P 2 -SRC achieves almost the same classification accuracy compared with traditional 

SRC approach which indicates the security add-ons do not affect the accuracy of the SRC classifier. We 

also demonstrate that it outperforms the most related work, Pickle, significantly on recognition accuracy 

and privacy protections. Meanwhile the implementation of P 2 -SRC in a face recognition application on 

smartphones demonstrates that P 2 -SRC based authentication system accounts for only 0.0 0 0 041% of the 

total energy supply of a normal smartphone and the average responding time is around 1.1 s for each 

recognition request. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Cloud-enabled mobile applications (CMAs) are booming with

he pervasive availability of smart mobile devices (e.g., smart-

hones, tablets, wearable devices), high speed networks (e.g., Wifi

nd 4G) and high performance cloud services [19,28] . As CMAs

rocess large amount of crowdsourced data in centralised manner,

ost of the CMAs utilise the resources of cloud servers to store

verwhelming amount of collected data and undertake computa-

ionally intensive tasks. 

Signals classification is popular in CMAs and it has been stud-

ed in the literature for decades [24] . It is the basis of the au-

hentication [9] , medical diagnosis [5] and environment aware-

ess systems [25] . Crowdsourcing benefits the classification sys-
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em especially for learning the classification model (i.e., the clas-

ifier). For example, to develop a classification model, the applica-

ion publisher needs to collect sufficient training samples from cer-

ain group of people where crowdsourcing saves the effort s on the

ata collection. In this paper we define two risky groups of sub-

ects whose privacy can be attacked in the CMAs: the Data Con-

ributors and Application Users . Data contributors are recruited by

pplication publishers to upload their sensor data of their mobile

evices to the cloud for building the training set. The application

sers make use of the built classification models for recognition/

lassification. 

Innovate CMAs have created many possibilities [4,26,27,30] ;

owever, security issues arise when cloud server is not

rusted [46,55] . The uploaded sensor data of mobile devices may

ontain personal information or be used to infer individuals’ pri-

ate information. To prevent the privacy leakage, many researchers

ave proposed new privacy-preserving methods [12,25,53] . For

nstance, Pickle was proposed by Liu et al. [25] to provide certain

https://doi.org/10.1016/j.comnet.2018.01.035
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privacy protection in the classification system when learning the

classifier from the encrypted crowdsourced training set. However,

Pickle only considered the content privacy attacks (sensor values)

but ignored the possible label privacy and source privacy attacks

(see definitions next paragraph) though they admitted labels may

leak important information. 

Three types of attacks In this paper we introduce three types

of privacy attacks, i.e., Content Privacy Attacks, Source Privacy At-

tacks and Label Privacy Attacks . 

• Content privacy attacks are the attacks on drawing actual val-

ues of the sensor data of mobile devices. 

• Source privacy attacks aim to find the sources or related iden-

tities where the sensor data is derived; 

• Label privacy attacks are the attacks on obtaining class labels

of the training set which allows the adversaries to interpret the

classification results and users’ activities. 

The sources of the sensor data are sensitive information. For

example, in a cloud-enabled authentication system, some of the

computational burden is shifted to the cloud. The authentication

decision is made according to the results computed on the cloud.

If the sources are not protected and the cloud is compromised,

the adversaries may collude with the cloud server to deduce the

possible results from the historical observations and send back

the “fake” results to the mobile devices to help the adversaries

to break into the authentication systems. The class labels can be

used to interpret the classification activities. In label privacy at-

tacks, if the class labels are not protected, the adversary is able to

obtain the specific physical meaning of the class labels. Some pri-

vate information of the users or data contributors can be drawn

from the classification results. For examples, the attackers are able

to deduce the health status of the patients in the medical diag-

nosis system or track the daily activities of the individuals in the

activity recognition system. However, health status and daily activ-

ities are extremely sensitive and most of the users are not willing

to disclose them to the third party or to the public. Meanwhile,

They have substantial commercial values so that are very likely to

be targeted by the attackers. 

To solve the above mentioned three types of privacy issues

meanwhile providing reliable classification services, we propose

a new Privacy-Preserving and cloud-enabled classification sys-

tem, P 

2 -SRC, based on Sparse Representation Classification (SRC),

for CMAs. SRC is an emerging classification method and it has

demonstrated superior performance on recognition accuracy com-

pared with other traditional classification methods and is suc-

cessfully used in face recognition [39,48] , wildlife sound recog-

nition [45] and activities classification [44] . Besides the accurate

classification services, P 

2 -SRC uses random projection matrices to

compress sensor data meanwhile protect the data content. Then

a Tor-like network is incorporated in the SRC-based classification

framework to protect users from label and source privacy attacks.

The contributions of this paper are as follows: 

• Overall, we propose a new privacy-preserving and cloud-

enabled classification framework, P 

2 -SRC. As our evaluations on

different classification applications, its recognition accuracy is

almost the same to the traditional SRC method which indicates

the privacy add-ons do not deteriorate the recognition accuracy

of SRC. 

• P 

2 -SRC addresses different types of privacy attacks including

content privacy attacks, source privacy attacks and label privacy

attacks. To the best of our knowledge, it is the first privacy-

preserving classification system that can address all of the three

types of privacy attacks. Meanwhile it achieves significant im-

provement on accuracy-privacy trade-off according to our eval-

uations on two classification applications. 
• We conduct two user studies to demonstrate, in intuitive ap-

proach, 1) P 

2 - SRC provides reliable protections for users’ data

values, and 2) most of the users concern more about the pro-

tections of label and source information than sensor data val-

ues. 

• At last, we implement a face recognition system based on P 

2 -

SRC on smartphones. The results show that the system cost of

P 

2 -SRC is negligible, and it provides real-time responses. 

The organization of the rest of this paper is as follows. We first

eview the related literature in Section 2 . Then we provide a brief

ntroduction of SRC in Section 3 . In Section 4 , we discuss the sys-

em architecture, present two application examples and provide

rivacy analyses of P 

2 -SRC. Section 5 evaluates the performance of

wo classification applications of P 

2 -SRC with two publicly avail-

ble datasets. Section 6 evaluates the system cost of the implemen-

ation of P 

2 -SRC face recognition application on mobile devices. Fi-

ally we conclude the whole paper in Section 7 . 

. Related work 

In this section, we will give a literature review on the state of

he arts in relevant research area. As our proposed system aims

o protect the privacy of the users in mobile classification appli-

ations and the classification engine is the Sparse Representation

lassifier (SRC), we discuss the recent advances in privacy protec-

ion for CMAs and applications of SRC. 

.1. Privacy protections for mobile applications 

Mobile app development is a hotspot and the security of the

obile devices has become one of the most recent major con-

erns in mobile system research community [2,21,31,35] . For ex-

mples, Herberst et al. [17] designed privacy capsule to avoid the

rivate information leakage via the untrusted third party mobile

pps. While Zhu et al. [56] studied the private information leak-

ge in code level; they addressed the ‘module-level attacks’ of the

obile app to prevent the third-party code stealing the private in-

ormation on the COTS mobile devices. To protect the mobile de-

ices from illegal usage meanwhile provide non-intrusive authen-

ications, touch input implicit authentication (touch IA) was pro-

osed and studied on different mobile devices; however, as the

valuations by Khan [22] , touch IA was easy to be mimicked and

ot suitable from a security standpoint. 

Private information can be vulnerable when sharing or upload-

ng data via wireless channel. Xu et al. [49] proposed Walkie–talkie

o generate encryption key based on gait. It enabled the mobile

evices get paired automatically and prevents the devices from

avesdropping radio communications. Chakraborty et al. [7] pro-

osed Ipshield a new context-aware privacy protection scheme to

stimate the risks of sharing data in the cloud-enabled mobile ap-

lications. It provides the user with a list of the inferences that

an be drawn from the data so the user can be aware of potential

isks when sharing the data. To deal with the problem of relia-

ility of the sensory data provided by the data contributors, Miao

t al. [29] proposed a cloud-enabled privacy-preserving truth dis-

overy framework which solved the problem of private informa-

ion protection existed in the previous truth discovery approaches.

oolview [15] studied the problem of reconstruction attack and

roposed a synthesis model which introduced correlated noise per-

urbation to protect the privacy of data sharing. Liu et al. pro-

osed Pickle [25] which is the most related work to P 

2 -SRC. Pickle

nabled privacy-preserving collaborative learning for SVM using a

inear regression based approach. However, it only considered the

roblem of content privacy attack. Other solutions [18,33] allowed

sers to control their resources and created shadow to prevent the
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ntrusted applications to access the resources on their mobile de-

ices. The most advantages of P 

2 -SRC over the existing works are

he miscellaneous privacy protections it provides including content

rivacy as well as label privacy and source privacy. 

.2. Applications of SRC 

SRC has been popularly used in improving the performance

f applications on embedded systems including face recogni-

ion [39,40] , cognitive assistance [50,51] , sound classification of

ildlife animals [45] , activity recognition [44,52] and video track-

ng [37,38] . Random projection matrices are used in [45,48] to re-

uce the dimensionality of the problems while preserving the ac-

uracy of classification. Shen et al. [39] studied the problems on

ow to optimize the projection matrix to improve the classifica-

ion accuracy with the knowledge of the training dictionary. 

. Sparse representation classification 

Huang et al. [20] formulate the signals classification as a sparse

epresentation problem computed via � 1 optimization (termed as

RC). The formulation uses a random projection matrix for dimen-

ionality reduction. The steps of SRC are: 

.1. Dictionary building 

To model signals classification as a sparse representation prob-

em, one needs to first build a dictionary D. We assume there are K

lasses and T training samples per class. Each training sample is an

 -dimensional column vector. We then assemble the training sam-

les of the i th subject in a N × T sub-dictionary D i . Then a N × KT

ictionary D = [ D 1 , D 2 , . . . , D K ] is formed from the K classes. 

.2. Sparse representation 

Let y denote a test vector, its representation under the dictio-

ary D is obtained by solving the following linear equation with

he knowledge of y and D : 

 = Dθ (1) 

here the unknown vector θ contains n = KT unknowns which is

qual to the number of columns in D. If the test signal y belongs

o the k th class, then ideally y is within the space spanned by the

 vectors in D k class and independent of the other classes. If the

deal condition holds, then the representation vector θ for y has

he form: 

= [0 , 0 , . . . , αk, 1 , αk, 2 , ., αk,T , . . . , 0 , 0 , ., 0] 
T 

(2) 

here · T denotes the matrix transpose, and the non-zero elements

ppear only in those positions related to the k th class in D. If the

umber of classes K is large, then θ is a sparse vector if the ideal

ondition holds. 

.3. Random projections 

In the applications using SRC, the dimension N of the signal

ector is huge, solving Eq. (1) can be computationally expensive

or mobile devices. A random projection matrix can be applied to

mprove the computational efficiency while preserving recognition

ccuracy. The random projection matrix � in most of the applica-

ions on embedded or mobile system [39,45] is generated from a

aussian distribution with zero mean and unit variance and does

ot consider the prior knowledge of the dictionary. Incorporating

n m × p Gaussian matrix � in Eq. (1) , we have 

y = �Dθ . (3) 
here m � n makes the systems of linear equations underdeter-

ined. Since we are looking for a sparse representation θ , we aim

o solve the following � 0 optimization problem 

ˆ = arg min ‖ θ‖ 0 subject to �y = �Dθ (4) 

here ˆ θ is the sparse representation of y under dictionary D
nd ‖ · ‖ 0 represents the � 0 norm, which counts the number of

on-zero coefficients in 

ˆ θ . The optimization problem (4) is NP-

ard [23] , which means no known algorithms can solve the prob-

em within polynomial time. 

Inspired by the recent theory of CS, the solution of � 0 optimiza-

ion in Eq. (4) can be well approximated by the following � 1 opti-

ization problem, 

opt = arg min ‖ θ‖ 1 subject to ‖ �y − �Dθ‖ 2 < ε (5)

here ε is a small positive value used to account for noise. The so-

ution θopt from the � 1 optimization is used in the following clas-

ification procedure. 

.4. Minimal residual 

After obtaining the coefficient vector θopt , we can determine

he class of the test vector y by using residuals. The residual for

lass i is: 

 i = ‖ y − D i θ
(i ) 
opt ‖ 

2 
(6) 

here θ (i ) 
opt is a T -dimensional vector containing the T elements in

opt related to class i . Then the final classification is determined by

ˆ 
 = arg min 

i =1 , 2 , ... K 

r i , (7) 

.e., the class having the minimal residual among all classes. 

. Privacy-preserving SRC 

.1. Threat model 

In this paper, we consider an honest-but-curious cloud server.

t follows the protocol to provide training set building and clas-

ification services but is curious about users’ private information

uch as data content, data sources, data labels, etc. In addition, the

eer users are also not trustworthy: they might collude with the

loud server in order to obtain the private information of the legit-

mate users. A similar threat model, which only considers the data

ontent privacy, is widely adopted in recent cloud-enabled systems

6,10,25] , and our goal in this work is to protect the content, source

nd label privacies of both data contributors and application users.

.2. System overview 

The system architecture can be vastly divided into two main

arts. The first is the privacy-preserving data collection where sen-

or data samples are collected from data contributors to form the

raining set on cloud server. The second is the cloud-enabled and

rivacy-preserving classification where the application users send

heir encrypted test samples to the cloud server to compute the

parse representation vectors then using the returned sparse rep-

esentation vectors to determine the final classification results (see

ig. 1 ). 

Specifically, in the privacy-preserving data collection stage, the

pplication publishers first advertise their requirements for re-

ruiting data contributors, the random projection matrix (or called
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Fig. 1. System architecture of P 2 -SRC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

i

 

u  

t

4

p

n  

S  

e  

c  

e  

p  

s  

v  

t  

i  

o  

r  

m  

v  

u  

fi  

p  

v  

i  

c  

s  

a  

F  

t  

c  

v  

s  

c

4  

t  

t  

p  

r  

t  

c  

m  

s  

i  
compressed key with respect to its privacy protection purpose), de-

tailed privacy risks and incentives to be provided. Then the re-

cruited data contributors collect, compress and transmit the re-

quired sensor data to the cloud server via the anonymous com-

munication channel. With the anonymous communication proto-

col, the cloud server is unknown who contributes the training sam-

ples and their physical meanings. Finally the training set is formed

by the encrypted data samples uploaded from different data con-

tributors. It is worth noting that all the data contributors use the

same compressed key so that the compressed key is very likely to

be disclosed. 

As SRC-based classification systems do not involve model learn-

ing, the system is ready for the classification tasks once the train-

ing set is built. Similar to the training phase, the application users

collect, compress (using the same compressed key) and transmit

the test data to the cloud server via anonymous communication

channel. The sparse representation of the test data is computed on

the cloud server. The resultant sparse representation vector is re-

turned back via anonymous communication channel. At last, the

final classification decision is obtained by computing the minimal

residual with the knowledge of the class labels on the local mobile

devices. 

4.3. Privacy-preserving data collection 

In privacy-preserving data collection, protection of content is

achieved via applying compressed key while sources and labels

are protected by introducing anonymous communication channel

in the SRC-based classification framework. 

4.3.1. Random projections for content protection 

Before data contributors upload their sensor data samples to

the cloud server, the compressed key (or random projection ma-

trix) obtained from the application publisher is first applied to

protect the content of data. For example, one of the data contrib-

utor i collects a sensor data vector d i,t ∈ R 

N at time t . Then the

data vector is encrypted and compressed using the compressed key

K ∈ R 

M×N ( M � N ), 

a i,t = K · d i,t (8)

We call the random projection matrix as Compressed Key because

it both compresses and encrypts the original data vector. Ran-

dom projection matrix provides a computational guarantee of se-

crecy [34] so that reconstruction with a wrong projection matrix

will produce incorrect results. As the number of elements in the

matrix is huge and they are randomly generated from Gaussian

distribution, the brute force attack is not feasible. Besides, in P 2 -

SRC, adversaries cannot reconstruct the original sensor data even
f the compressed key is disclosed. This will be discussed further

n Section 4.6 and evaluated in Sections 5.2.3 and 5.3.3 . 

After the data vector is compressed and encrypted, it will be

ploaded to the cloud server via anonymous communication pro-

ocol to form the training set. 

.3.2. Anonymous communication channel for source and label 

rotections 

In a cloud-enabled approach, the encrypted data vector a i, t 
eeds to be uploaded to the cloud server as a training sample.

uch approach is termed as collaborative learning [30] in the lit-

rature and is widely adopted by researchers to build high quality

lassification models to support novel mobile applications. How-

ver, although each uploaded data vector is encrypted by the com-

ressed key, the equal important sensitive information, i.e., the

ources (identities of the data contributors) and class labels, are re-

ealed during the uploading process; (users concerns more about

he protection of labels and sources according to the user studies

n Section 5.4 ). In previous work [7,25] the source and class label

f each uploaded feature vector is known to the cloud, the cor-

espondence between the identity and the uploaded training data

ay lead to potential tracking attacks. For example, if the data

ector contains the encrypted voice features of the data contrib-

tors, even though the cloud server cannot decrypt the content ef-

ciently due to the usage of compressed key, during classification

rocess the cloud server is still able to tell one encrypted input

oice segment belongs to which data contributor. Therefore, expos-

ng the sources during dictionary building potentially allows the

loud to track data contributors by voice features in future cloud

ervices. Similarly, exposing the label of each uploaded data vector

lso poses significant privacy-leakage threats to data contributors.

or example, if the subject classes are different types of diseases,

he data contributors and application users might not want the

loud to gain the knowledge about the label of each uploaded data

ectors. Based on the above concerns, in this work, we consider a

ignificantly more stricter privacy-preserving scheme to protect the

ontent, source, and label of each uploaded data vector. 

.3.2.1. Anonymous communication channel. To protect the identi-

ies of communication entities, many researches have been done

o design anonymous communication channels. One popular ap-

roach is through the use of Tor network [13] . The Tor network

elies on the intermediate message relays called Tor proxies and

he onion routing which is implemented by encryption in the appli-

ation layer of a communication protocol stack to achieve anony-

ous communication. However, researchers have reported several

hortfalls in the Tor network [32] : (i) when constructing the rout-

ng path, relays with low bandwidth have higher probability of be-
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ng selected; (ii) Tor servers are scattered around the world, result-

ng a large RTT during communication; (iii) lack of active servers. 

Since most CMAs assume many participating mobile devices, a

ess complicated, more light-weight, more flexible and dynamic so-

ution is possible by exploiting the pervasive communication capa-

ility of the participating mobile devices. Therefore, we implement

 Tor-like network on mobile devices in P 

2 -SRC to achieve hard-

o-trace communication through a chain of proxy servers, i.e., other

eer mobile devices in P 

2 -SRC. In the Tor-like network, all the par-

icipating mobile devices also serve as proxies and the cloud main-

ains and distributes the list of the active mobile nodes. When con-

tructing the Tor-like network, the end mobile device randomly se-

ects multiple available peers from the list received from the cloud

s its proxies and sends its encrypted message through the net-

ork. Each proxy server takes the input messages from the pre-

ious proxy, decrypts the outermost layer of the onion encryp-

ion [8] of the address trace to reveal the next proxy’s address

hen sends the remaining messages to the next proxy until the

essages reach the final destination. As a result, the final recipi-

nt cannot trace the source of any message due to the intermedi-

te proxies. In our Tor-like network, onion encryption only applies

n the address trace as the original message has been protected

y compressed key. Therefore, the computation and communica-

ion cost can be reduced. As shown in our evaluation results, the

or-like network achieves low latency while also incurs small en-

rgy consumptions on mobile devices. The detailed description of

he Tor-like network is as below: 

This Tor-like network is based on the architecture of mix net-

ork. The public key cryptosystem is adopted in the network. For a

or-like network consists of n m 

proxies, a pair of public/private key

(K 1 , K 

−1 
1 

) , (K 2 , K 

−1 
2 

) , . . . , (K n m , K 

−1 
n m ) are generated by each proxy

uch that for i = 1 , . . . , n m 

and arbitrary message M ( M is the pro-

ection vector in P 

2 -SRC), K 

−1 
i 

(K i (M)) = M. In P 

2 -SRC, as the mes-

age has been encrypted by the compressed key, the implementa-

ion of mix network is modified and is only applied to protect the

ploading trace consisting of the proxies and cloud’s addresses. 

To send a message to the cloud server through only one proxy,

he data contributor uses the public key of the server K s and the

ublic key of the proxy K 1 to encrypt the message M and server’s

ddress A s successively: 

 1 (R 1 , K s (R s , M) , A s ))) . 

he proxy receives the message, decrypts it using the private key

 

−1 , throws away the random string R 1 and sends the remain-

er K s ( R s , M ) to the cloud server using the address A s . The server

ecrypts the message using its private key K 

−1 
s , throws away the

andom string R s and obtains the original message M . The random

trings are applied to prevent the adversaries to infer the data vec-

or with the available public keys which is also known as the col-

ision attack [36] . Since the correspondence between the received

essage on the server side and the input of the proxy is elimi-

ated by the proxy, the source of the message M is hidden from

he cloud server. 

Considering the fact that one proxy may be not trustworthy , a

ascade , or a series of proxies are applied so that any single proxy

n the network can guarantee the anonymization of the source. To

se a cascade, the data contributor chooses a sequence of n m 

prox-

es with addresses A 1 , A 2 , ... , A n m , and encrypts the addresses of the

race to the cloud server as: 

K n m (R n m , K n m −1 (R n m −1 , . . . , 

K 2 (R 2 , K 1 (R 1 , A s ) , A 1 ) . . . , ) , A n m −1 ) . 

where K s is the address of the server and K 1 , K 2 ... , K n m are the

ublic keys of the proxies. 

The first proxy receives the above message and the encrypted

ata vector, decrypts one layer of the encrypted message using its
rivate keys, and obtains the message: 

R n m , K n m −1 (R n m −1 , . . . , 

K 2 (R 2 , K 1 (R 1 , A s ) , A 1 ) . . . , ) , A n m −1 . 

The proxy then throws away the random string R n m and sends

he remainder and the encrypted data vector to the next proxy as

he decrypted address A n m −1 (all the revealed addresses are also

iscarded). The random strings are applied to prevent the adver-

aries to infer the data vector with the available public keys which

s also known as the collision attack [36] . In this way, the en-

rypted data vector finally reaches the cloud server after passing

hrough n m 

proxies. Each proxy only knows the addresses of its

ne-hop neighbours. As a result, as long as one proxy in the cas-

ade is trustworthy, the correspondence between the input data

ector and the final received data vector on the server can be elim-

nated and hence the sources of the data vector is protected. 

.3.2.2. Practical Tor-like network protocol. One potential problem

f the Tor-like network is the system scalability. The length of

he message and communication delay grows with the number

f proxies selected. Therefore, the scheme is not scalable and be-

omes impractical if the number of selected proxies is large dur-

ng the dictionary building. To tackle the scalability problem, each

ata contributor randomly choose fixed number ( n m 

) of other mo-

ile devices participating in the same application as the proxies

nd decides the trace to the cloud server locally. As n m 

is fixed, the

omputational cost for uploading each message does not change as

he number of mobile devices increases in the system. As the pri-

acy analysis in Section 4.6.2 , when n m 

= 5 , it achieves high proba-

ility (0.97%) of source protection even if half of the mobile devices

s possible to collude with the cloud server. At last, to address the

abel privacy attack, during data uploading, the data contributors

nly upload the encrypted data vectors and hide the label of each

ata vector. As a result, P 

2 -SRC hides both the source and label of

ach data vector. 

.3.3. Training set multicast 

After the training set is built from the collected training sam-

les on the cloud server, the labels of the training set are still kept

nonymous to all parties as the data contributors upload sensor

ata without label information. The training set is then multicast

o all the data contributors so that each contributor is able to con-

rm the column indices of its submitted samples in the training

et (i.e., the class labels used in the future classification applica-

ions) by directly comparing the column vectors of the training set

ith the data vectors they uploaded to the cloud server previously.

s the labels are generated locally, they are protected from the

loud server and other users. The training set and generated class

abels are stored locally at the data contributors (e.g., end devices

n the authentication application) or uploaded to a trusted third

arty (e.g., a doctor in a medical diagnosis application) depend-

ng on different classification scenarios. Training set multicast does

ot introduce further information leakage because the training set

s encrypted by compressed key; the class labels and sources infor-

ation are not included in the training set. 

It is worth noting that SRC-based classification method does

ot involve model learning stage . However, learning a classifica-

ion model is an essential component for most of the traditional

lassification methods, e.g., SVM, and the available labels informa-

ion is required. It is known that K-Nearest Neighborhood (K-NN)

oes not involve model learning either, however, as the evaluations

n Section 5 , its classification accuracy is significantly lower than

RC. Therefore, we choose SRC as the fundamental building block

or our system. 
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4.4. Cloud-enabled and privacy-preserving classification 

After the privacy-preserving data collection, cloud server has

obtained the training set A which consists of the compressed and

encrypted data vectors as its columns. Due to the usage of Tor-

like network, the server does not have the information about the

source and label of each data vector. Different from the training

set in traditional SRC application where the data vectors with the

same class labels (or sources) are grouped together, the cloud side

of P 

2 -SRC randomly places the data vectors regardless of their

class labels or sources as they are unknown to cloud server. 

In the classification stage, the application user i first obtains a

data vector x i, t and compresses it with the compressed key K. It

can be expressed as, 

y i,t = K · x i,t (9)

Then y i, t is uploaded to the cloud via the Tor-like network for

computing its sparse representation using � 1 optimisation. 

Returning address encryption Different from the data collec-

tion stage, the application user should also upload the encrypted

returning trace to the cloud server to guide the sparse represen-

tation vector back to the application user. The returning trace is

successively encrypted in a reverse manner of the encryption of

uploading address. 

K s (K 1 ( . . . , K n m ( A u , R u ) . . . , A 2 , R 1 ) A 1 , R 1 ) , 

where A u is the address of the application user. The most outer

layer of the encryption is the public key of the server, therefore

the intermediate proxies cannot start decrypting the layers of the

union encryption of the returning address trace until the encrypted

data reaches the cloud server. 

4.4.1. Labelless cloud-enabled sparse representation 

Computing sparse representation accounts for most of the re-

source consumptions of the SRC-based classification on mobile de-

vices [39,45] . Considering mobile devices are resource constrained,

we shift the computational burden of sparse representation to the

cloud server. 

When the cloud server receives y i, t from some unknown appli-

cation user, the sparse representation vector will be computed by

solving � 1 optimisation, 

ˆ θi,t = arg min ‖ θi,t ‖ 1 subject to ‖ y i,t − A θi,t ‖ 2 < ε (10)

where ˆ θi,t is the estimated sparse representation of y i, t . under

training set A . According to the form of Eq. (10) , computing sparse

representation does not involve class labels. On the contrary, the

most popular used classifier, SVM (used in Pickle), needs the class

labels to train the classification models. 

4.4.2. In-situ residual computation on mobile devices 

After computing � 1 optimisation on the cloud server, the sparse

representation vector ˆ θi,t is returned back to the application user

i via the Tor-like network by decrypting the encrypted returning

trace layer by layer. 

The application user receives the sparse representation vector
ˆ θi, j and computes the residuals on the local mobile devices to

determine the class of the test vector y i, t . To further speed up

the classification and reduce the energy consumption on the mo-

bile devices. We adopt the Compressed Residual proposed by Shen

et al. [39] . The compressed residual of class j is expressed as, 

r i,t = ‖ y i,t − A j θ
( j) 
i,t 

‖ 

2 
(11)

where θ ( j) 
i,t 

contains the T elements in θ i, t related to class j . Then

the final classification result is determined by 

ˆ j = arg min 

j=1 , 2 , ... M 

r i,t , (12)
here M is total number of classes. The class produces the mini-

al residual is the final classification result. 

.5. Applications of P 

2 -SRC 

.5.1. Application I: cloud-enabled authentication 

Authentication system on mobile devices identifies the individ-

als based on personal biometrics or passwords to grant access.

uthentication based on face recognition is popularly used in mo-

ile sensing applications. It recognizes the genuine user according

o his facial appearance captured by the embedded cameras on the

obile devices. However, photos of human faces are very sensitive

nd people are reluctant to make such photos exposed to the pub-

ic. Therefore, how to securely manage the collected face photos is

rucial. 

In the cloud-enabled face recognition system with P 

2 -SRC, the

nd device, e.g., a smartphone, captures a photo of face of the

ubject to be authenticated. Then it compresses and encrypts the

hoto and uploads it to the cloud via anonymous communication

rotocol. The cloud computes an intermediate result by solving the

ost computationally intensive task and returns back this result to

he smartphone. The final authentication decision will be made lo-

ally on the smartphone by solving lightweight residual computa-

ion in case the cloud gives a fake authentication decision to col-

ude with an adversary to fool the smartphone system. 

Our proposed P 

2 -SRC enhances the security of authentication

ystems in two sides. On one hand, the compressed key encrypts

ace photos so that the adversaries cannot reconstruct the face

hotos without the compressed key. Even in case the cloud is com-

romised and the compressed key is disclosed, the face photos still

annot be reconstructed because the compressed data is not suffi-

ient for an accurate reconstruction (as shown in the privacy anal-

ses in Section 4.6.1 , evaluations in Section 5.2.3 and user study II).

n the other hand, P 

2 -SRC also prevents adversaries from break-

ng into the mobile devices system when they collude with the

loud server. This is achieved by leveraging an anonymous com-

unication protocol which protects the sources. For example, in

loud-enabled mobile authentication system, without the protec-

ion of sources, the compromised cloud server can deduce the pos-

ible sparse representation vector of the real user according to

he records of historical authentication activities from the same

source” and return this “fake” sparse representation vector to the

obile devices when the adversaries attempt to get authenticated.

ote that the labels and sources are equal in authentication system

ecause the class labels are just the identities of the users. 

We implement this application as a prototype of P 

2 -SRC in

ection 6 where we provide example of implementation details

nd evaluate its system cost. 

.5.2. Application II: medical diagnosis classification system 

Our proposed system is able to protect the privacy of users

n privacy-sensitive applications (i.e., a medical diagnose system)

here a trusted third party exists (i.e., a doctor). The label in-

ormation is significantly sensitive when the interpretation of the

lassification results is related to the private information of the

sers (patients in this case). Medical diagnoses based on classifi-

ation techniques are well studied in the literature. For instances,

motional facial expressions classification is often used in depres-

ion recognition [11,41,42] ; activities and gait recognitions can be

sed to assist medical diagnosis of Alzheimer’s disease [43,47] . In

he medical diagnosis system, labels must be protected because the

nterpretation of the class labels are related to the health status of

he patients. 

Different from the authentication system, there should be a

rusted third party (i.e., the doctor) in the medical diagnosis sys-

em who maintains the class labels information uploaded from
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he data contributors. With P 

2 -SRC, the cloud only computes the

parse representation vector without the knowledge of class labels,

herefore, in label privacy attack, the adversaries cannot infer the

lassification results from the sparse representation vector even if

he cloud is compromised. In this scenario, the data contributors

some patients) are different from the application users (the doc-

ors). The class labels can be used to infer the sensitive information

uch as the diseases of the patients or the expertise of the doctors.

.6. Privacy analysis 

.6.1. Reconstruction attack 

Reconstruction attack , or termed as content privacy attack in this

aper aims to estimate the original data by applying reconstruction

echniques. In this section, we will prove that P 

2 -SRC is resilient to

he reconstruction attack meanwhile preserving the classification

ccuracy even if the compressed key is disclosed. 

reliminary . We assume that the cloud server has built a train-

ng set A consisting of encrypted data vectors from P classes. The

riginal data vector contains N elements where N is huge (we only

onsider the classification of high dimensional data in this paper).

he compressed key K 1 ∈ R 

m 1 ×N ( m 1 � N ) maps the high dimen-

ional data vectors into a significantly lower dimensional space. In

he classification phase, a test data vector x 1 ∈ R 

N is obtained and

hen encrypted to y 1 with the compressed key K (i.e., y 1 = K · x 1 )

n mobile device. y 1 is uploaded to the cloud server. 

roposition 1. In a cloud-enabled mobile classification system where

 � N, a compressed data vector y 1 can be resilient to reconstruc-

ion attack meanwhile produces high recognition accuracy when it is

ompressed using random projection matrix K, if O( log P ) < m 1 �
(s r log N) . 

roof of Proposition 1 . We now give a theoretical proof for the per-

ormance of P 

2 -SRC on the trade-off between privacy protection

nd classification accuracy under reconstruction attack according

o the theory of Compressive Sensing [14] . 

.6.1.1. Privacy protection. The performance of P 

2 -SRC is deter-

ined by the number of projections m 1 : larger m 1 brings higher

lassification accuracy, however, the compressed data vector y 1 is

asier to be reconstructed, i.e., is vulnerable under reconstruction

ttack. In the reconstruction attack, we assume the cloud server is

ompromised. The adversary has the compressed data vector y 1 ∈
 

m 1 and the compressed key K 1 ∈ R 

m 1 ×N . The adversary wants to

econstruct the original data vector x 1 by solving the following � 1 
ptimization problem, 

ˆ 
r = arg min ‖ θr ‖ 1 subject to ‖ y 1 − K 1 �θr ‖ 2 < ε (13)

hen the reconstructed data vector ˆ x 1 = � ˆ θr , where � is called

he sparse basis or dictionary. It can be some standard orthonor-

al basis (e.g., Fourier transform basis or wavelet transform basis)

r learned from some specific signals. We consider the worst situ-

tion where � is known (e.g., Fourier transform basis). According

o the formal proof in [14] , x 1 will be accurately reconstructed if

he minimal number of projections m att satisfies, 

 att = O(s r log N) (14) 

here s r is the sparsity of x 1 under the basis � therefore s r ≥ 1. 

.6.1.2. Classification accuracy. Correct classification can be

chieved if we can obtain an accurate estimation of the sparse

epresentation of y 1 under training set A via � 1 optimization pre-

ented in Eq. (10) . Again, according to the theory of compressive
ensing, an accurate sparse representation can be achieved when

he minimal number of projections m c satisfies, 

 c = O(s 1 log P ) (15)

here s 1 is the sparsity of y 1 under training set A . In most of the

lassification system, the sparsity s 1 should be equal to 1 because

 should belong to only one class. Therefore, it can be rewritten as

 c = O( log P ) . 

hoosing of m 1 . In the classification system with high dimensional

ata vectors, N � P . For example, in facial expression recognition

ystem, the number of classes P is below 10 (for example, the

opular used Japanese Female Facial Expression dataset only con-

ains 6 basic expressions and 1 neutral.) while the dimensionality

f original data vectors will be over tens of thousands. According

o the above statements, it is obvious that 

 r log N � log P 

s N � P . So that m att � m c . It indicates that the number of pro-

ections required for the classification system is significantly less

han that required for data reconstruction. As the gap between the

wo bonds are huge, the application publisher can easily choose a

roper number of projections m 1 to provide an accurate classifica-

ion service meanwhile protect the data vectors from reconstruc-

ion attack, i.e., let 

 c < m 1 � m att (16) 

o verify our proof, we also conduct the dataset evaluations on two

lassification applications in Sections 5.2.3 and 5.3.3 . The evalua-

ion results show that P 

2 -SRC produces high classification accuracy

ith relatively low number of projections and the attackers cannot

btain even a close approximation for the original data, e.g., faces

r activity data which indicates both privacy and utility can be pre-

erved. 

.6.2. Collusion attack 

We consider two types of collusion attacks in our paper: the la-

el privacy attacks and source privacy attacks. In collusion attack,

he cloud server colludes with some of the mobile devices in the

ame classification application to infer the class labels and sources

f the data vectors. In P 

2 -SRC we achieve the source and label pro-

ections by leveraging anonymous communication channel, i.e., the

or-like network, in an SRC-based framework. The protection of the

ources can be achieved if at least one proxy is not compromised

hich indicates higher level of privacy protection can be achieved

y adding new proxy [8] . However, to avoid the overwhelming sys-

em cost, the number of proxies are decided by the level of privacy

rotection required in P 

2 -SRC. To determine the number of prox-

es needed, we adopt a probability-based Tor-like network scheme.

onsidering a system with p % of malicious users who would poten-

ially collude with the cloud server. The application user randomly

elects n m 

mobile devices in the system as a cascade of proxies.

he probability that at least one proxy in the cascade is trustwor-

hy (i.e., the sources can be protected) therefore is 1 − p n m , the

robability is also equivalent to the probability that the source is

rotected. For example, if 50% of the users in the system is mali-

ious, and we choose a cascade of five users, then 1 − 0 . 5 5 = 0 . 97 ,

ence the probability that the source is protected is 0.97. Moreover,

s the uploading trace is determined locally, the source mobile de-

ices are convenient to change their uploading traces to enhance

ecurity. 

For the protection of labels, as computing sparse representation

oes not need the information of class labels, data contributors can

nly upload the encrypted data vectors and hide their class labels

rom the cloud server. Therefore the label privacy leakage can be

voided. 
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Fig. 2. Results of face recognition. 
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5. Dataset evaluation 

5.1. Goals, metrics, and methodology 

The aim of this section is to evaluate the performance of P 

2 -

SRC on classification accuracy and privacy protection. For the clas-

sification accuracy, we compare P 

2 -SRC with original SRC ap-

proach, Pickle [25] and Nearest Neighborhood (NN). We compare

with NN (1-NN) but not K-NN because 1-NN has been proved at

least as good as K-NN for classification problem [48,54] . For the

privacy-preserving, we compare P 

2 -SRC with the traditional ran-

dom noise perturbation approach. We evaluate the performance of

P 

2 -SRC in two different classification applications: face recognition

and activity recognition. The evaluations are made on two publicly

available datasets: the Extended Yale Dataset B [16] and UCI Hu-

man Activity Recognition Using Smartphones Dataset [3] . At last

we also conduct two user studies to provide more intuitive judge-

ment on the performance of the privacy protection and users’ atti-

tudes towards the sensitivity of different types of privacy attacks. 

For a fair comparison, we apply the same preprocessing, i.e.,

normalizing all the data samples, to the datasets for all compar-

ing algorithms. We also use variables control strategy. For example,

when comparing the recognition accuracy of P 

2 -SRC with other

classification algorithms, we first normalize all the data vectors

in the datasets then use random projections as the input features

and the only difference is the classifiers they adopt. It is a reason-

able setting because random projections are generally applicable

input features for different classifiers as the evaluation by Wright

et al. [48] , including SRC, Supportive Vector Machine (SVM), NN

and Nearest Subspace (NS). Meanwhile we do not consider the per-

formance of privacy preserving when evaluate the recognition ac-

curacy. However when comparing trade-off between the privacy

preserving and the recognition accuracy, SRC is adopted as the

classifier for both P 

2 -SRC and random noise perturbation to ex-

clude the influence of different classifiers used. 

In this paper, we use the percentage of correct recognition as

the performance metric of the recognition accuracy, which is the

number of right recognition over the total number of tests. Then

we evaluate the performance of privacy protection under recon-

struction attack. We use MI-RA (mutual information against recog-

nition accuracy) and Coherence-RA (coherence against recognition

accuracy) curves to estimate the privacy protection under different

recognition accuracies achieved. Lower MI or Coherence between

the reconstructed and original data vectors represents better pri-

vacy protection achieved. 

5.2. Face recognition 

5.2.1. Dataset description 

Extended Yale Dataset B consists of 38 subjects under 9 poses

and 64 illumination conditions. For each trail of the evaluation, we

randomly pick 30 face images from each subject to form the dic-

tionary D and the rest of the images are used as the tests. The

data vector is derived from concatenating the pixels of the image

by rows. As the resolution of the face images is 192 × 168 in the

dataset, each data vector contains 32, 256 elements and it is sig-

nificantly larger than the number of classes (i.e., 38). Therefore the

size of dictionary D is 32, 256 × 1, 140. To simulate P 

2 -SRC using

this dataset, we randomly shuffle the sequences of the columns in

D. During the test phase, each class only knows locations of its

own in the training set. While in the simulation of traditional SRC

method, the face images from the same class are grouped together

and the information of all the class labels is public. 
.2.2. Recognition accuracy 

To show that P 

2 -SRC provides high face recognition accuracy,

e compare P 

2 -SRC with original SRC, Pickle and NN methods.

ompressed key is randomly generated from Gaussian distribution

nd is used to compress and encrypt the data vectors. We gradu-

lly change the number of projections from 10 to 400 and com-

ute the overall recognition accuracy over the 38 subjects. The

esultant face recognition accuracy is represented by the average

ver 30 independent trails where different training sets are used.

s the results shown in (a), we can find P 

2 -SRC achieves almost

he same recognition accuracy compared with original SRC method

nd it also outperforms Pickle. Although its accuracy is only 4%

igher than Pickle when the number of projections is 100, it pro-

ects more types of privacies (source and label) than Pickle. An-

ther observation is the growth of the recognition accuracy dimin-

shes when the number of projections is over 100. Considering the

act that larger number of projections leads to more energy con-

umption on the local mobile devices due to computation and data

ransmission, 100 is chosen as the number of projections for P 

2 -

RC in face recognition application implementation. 

.2.3. Privacy evaluation 

Considering the situation where the cloud server is compro-

ised, adversaries obtain the compressed key and undertake re-

onstruction attack. The metric we use to evaluate the information

isclosure under the reconstruction attack is the Mutual Informa-

ion (MI). MI is popularly used to estimate the accuracy of image
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Fig. 3. Samples of Reconstructed faces from different encryption methods. 
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econstruction methods and is defined as 

I( f 1 , f 2 ) = En ( f 1 ) + En ( f 2 ) − JointEn ( f 1 , f 2 ) (17)

here f 1 and f 2 are two images, En ( · ) is the entropy and jointEn ( · )

s the joint Entropy. Then we scale the value of MI to 0 − 1 . To

resent P 

2 -SRC is resilient to the reconstruction attack even if the

ompressed key is disclosed, we compare it with the traditional

andom noise perturbation strategy. The noise added are randomly

rawn from a zero-mean-one-norm Gaussian distribution. The re-

ults are obtained from the average over 100 face images and rep-

esented by MI-RA trade-off curve. The MI-RA presents the mutual

nformation between the reconstructed image and original image

gainst the recognition accuracy achieved. We use MI-RA curve be-

ause the higher recognition accuracy achieved, the more infor-

ation will be disclosed. � 1 optimization (as Eq. (13) ) is used to

econstruct the face images encrypted by P 

2 -SRC; Principal Com-

onent Analysis (PCA) is used to reconstruct the face images pro-

ected by the noise perturbation approach. 

As the results shown in Fig. 2 (b), we can find P 

2 -SRC is sig-

ificantly more resilient to the reconstruction attack compared

ith the traditional noise perturbation approach when the same

ace recognition accuracy is achieved. For instance, when the face

ecognition accuracy is around 90%, MI between the original and

econstructed face image is only 0.04 for P 

2 -SRC but 0.24 for noise

erturbation. 

To provide more intuitive results to the readers, we present

he samples of reconstructed face images of two individuals. In

ig. 3 (a) and Fig. 3 (b), we present two rows of samples and each

ow consists of reconstructed face images from one individual. As

he samples shown in Fig. 3 (a), we can see that the faces are not

ecognizable by human until the number of projections p reaches

0 0 0 − 50 0 0 which is significantly more than the number of pro-

ections used in our P 

2 -SRC face recognition system ( p = 100 ).

he corresponding face image sample when p = 100 in Fig. 3 (a)

emonstrates that our system is resilient to reconstruction at-

ack when p = 100 and we actually cannot identify any shape of

aces in the images where the corresponding recognition accuracy

as reached 95%. However, as the face image samples shown in

ig. 3 (b), face images protected by noise perturbation can be easily

econstructed via PCA approach and we can still clearly recognize

he reconstructed faces even though the recognition accuracy (RA)

rops to only 77.4%. Therefore we can claim that our P 

2 -SRC face
ecognition system is resilient to the reconstruction attack even if

he compressed key is disclosed. 

.3. Activity recognition 

.3.1. Dataset description 

The UCI Human Activity Recognition Using Smartphones

ataset was collected from a group of 30 volunteers within the

ge of 19 − 48 . Each person performs 6 activities wearing a smart-

hone on their waist. therefore the number of classes in this

ataset is 6. Using the embedded accelerometer and gyroscope,

61-dimensional feature vector is extracted by calculating variables

rom the time and frequency domain (details about the types of

he features can be found in [3] ). Again, the dimensionality of the

eature vectors ( N = 561 ) is significantly larger than the number

f classes ( P = 6 ). The collected dataset is divided into two parts.

0% of the participants contribute data for the training part while

he rest of the participants contribute data for the test part. In our

valuation for activity recognition, we randomly select 100 fea-

ure vectors of each activity from the training part to form the

ictionary D ∈ R 

561 ×600 . Therefore the size of the dictionary D is

61 × 600. Then we randomly select 100 feature vectors from the

est part to form the test set. Again, to simulate P 

2 -SRC, the se-

uence of the columns in D is shuffled. 

.3.2. Recognition accuracy 

To present P 

2 -SRC activity recognition system achieves good

ecognition accuracy, we again compare it with original SRC, Pickle

nd NN methods. We use random Gaussian matrix as the com-

ressed key to compress and encrypt the feature vectors. During

he simulation, we gradually change the number of projections

rom 10 to 300 and represent the recognition accuracy over aver-

ging the results from 30 independent trails where different train-

ng sets and test sets are randomly selected. As the recognition

ccuracy shown in Fig. 4 (a), P 

2 -SRC activity recognition system

chieves exactly the same recognition accuracy to the traditional

RC approach because in this application scenario, the trusted third

arty has the full information of class labels. For example, the

ecognition accuracy of P 

2 -SRC is around 95% which is the same

o traditional SRC while Pickle and NN methods is only around 88%

nd 77% when p = 70 . 

.3.3. Privacy evaluation 

Then we compare the performance of privacy protection of P 

2 -

RC and noise perturbation approach against the reconstruction at-

ack when the compressed key is disclosed. The metric we use to

valuate the information disclosure for the reconstruction attack

n the feature vectors of the activities is the Coherence between

he reconstructed feature vector and its corresponding original fea-

ure vector. The Coherence is scaled to 0 − 1 and larger coherence

ndicates the reconstructed feature vector is more similar to the

riginal feature vector. 

The results of reconstruction attack are evaluated over 600 fea-

ure vectors (100 feature vectors for each class) and shown in

ig. 4 (b). Besides the results of P 

2 -SRC and noise perturbation af-

er signal reconstruction, we also present the results of the noise

erturbation without reconstruction as the baseline. From Fig. 4 (b)

e can find P 

2 -SRC achieves the best performance on privacy pro-

ection against reconstruction attack. The coherence produced by

 

2 -SRC is significantly smaller than that of the noise perturbation

pproach without reconstruction. 

To provide more intuitive results, we present some samples of

eature vectors and their reconstructed vectors from different pri-

acy protection schemes (only the first 100 data points are drawn

n the figure for the page size limit). In Fig. 5 , the first row of
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Fig. 4. Results of activity recognition. 

 

 

 

 

 

 

 

 

 

 

 

c  

f  

d  

t

5

 

i  

p  

r  

i

5  

s  

t  

r  

r  

m  

u  

f  

i  

o  

o  

t  

1  

r  

t

5  

i  

a  

r  

f  

(  

n  

#  

d  

s  

c  

v  

t  

n  

t  

t  

t  

e

figures presents the reconstructed feature vector values from P 

2 -

SRC while the second row is the reconstructed feature vector val-

ues from noise perturbation approach. Different columns from left

to right are marked with their corresponding recognition accuracy

(RA). The original feature vector values are also included in the

sub-figures as the reference. From the appearance of Fig. 5 , it is

obvious that the reconstructed feature vectors in the first row are

significantly different from the original feature vectors. It indicates

P 

2 -SRC protects the privacy of the feature vectors against recon-

struction attack well. However, as the results shown in the second

row, the feature vectors with noise perturbation are accurately re-
Fig. 5. Samples of Reconstructed activity sign
onstructed, the reconstructed feature vectors match the original

eature vectors very well. Therefore, noise perturbation approach

iscloses the information of the feature vectors under reconstruc-

ion attack. 

.4. User studies 

In this section we will discuss the results from two user stud-

es to 1) show the sensitivity of users to content, source and label

rivacy attacks and 2) evaluate the performance of P 

2 -SRC under

econstruction attack. We recruit 100 undergraduates to participate

n two questionnaire survey based user studies. 

.4.1. User study I. During the first user study, the users are pre-

ented four sequences of reconstructed face images similar to

hose in Fig. 3 . The number of projections used in P 

2 -SRC to de-

ive the compressed face images vary from 30 to 10, 0 0 0. The

ecruited users mark each of the face images 1, 2 or 3 where 1

eans the users cannot see any face from the image, 2 means

sers can find some face from the image but they consider the

ace is not clear enough to be recognized and 3 means users may

dentify the owner of the face from this image. The average score

ver 100 users are computed and shown in Fig. 6 (a). It is obvi-

us that users cannot recognize the identities of the faces when

he number of projections are below 1, 0 0 0. According to Fig. 2 (a),

00 projections are sufficient for P 

2 -SRC to achieve accurate face

ecognition however, all of the users agree that there is no face in

he image under the 100 projections setting. 

.4.2. User study II. In this user study, we investigate the sensitiv-

ty (importance) of different types of privacy attacks (content, label

nd source) to users. We provide a questionnaire survey to the 100

ecruited users. The users determine their sensitivity to four dif-

erent scenarios including the case history of the physical diseases

scenario #1), the recording of conversation with psychologist (sce-

ario #2), audio recording of their ambient environment (scenario

3) and sensor readings of the smartphones generated from their

aily activities (scenario #4). The sensitivity is represented by a

core from 0 to 10 where 10 stands for the highest sensitivity. We

ompute the average score of sensitivity of the three types of pri-

acies and present the results in Fig. 6 (b). The results demonstrate

he subjective feelings of users towards different application sce-

arios and types of privacy attacks. It is clear that the sensitivity of

he users varies with different scenarios meanwhile the users tend

o concern more about the source and label attacks than content

hough content privacy has been studied intensively in existing lit-

rature of privacy-preserving CMAs. 
als from different encryption methods. 
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Fig. 6. Results of user studies. 
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. System evaluation 

To evaluate the system cost of P 

2 -SRC on mobile devices, we

mplemented a prototype of cloud-enabled face recognition system

asing on P 

2 -SRC on smartphones and conducted face recognition

xperiments. 1 10 subjects were recruited as the data contributors

they were also application users) and each of the subjects con-

ributed 20 face images with resolution of 192 × 168 during train-

ng set collection phase. Therefore the size of the dictionary D was

2, 256 × 200. The face images were compressed and encrypted to

ata vector of 100 projections according the evaluation on the face

ataset in Section 5.2.2 . 

The system was implemented on 10 off-the-shelf Android

martphones running Android 4.4.4 (4 sets of Samsung Galaxy

ote 4, 4 sets of Samsung Galaxy S6 and 2 sets of Samsung Galaxy

5) and one Macbook pro laptop running Mac OS X EI Capitan

specifications: 2.5 GHz Intel i7 CPU, 16GB RAM and 512GB SSD)

s the cloud server. Wi-Fi was used for data transmission among

obile devices and cloud server. It is worth noting that our sys-

em is just a demonstration for the feasibility of the prototype and

t is implemented within a local area network. However, P 

2 -SRC

s orthogonal to the network services. For examples, the scale of
1 Ethical approval is granted by Massachusetts Institute of Technology (Reference 

umber 1502006877). 

t  

d  

c  

u  
he system can be extended by adopting mobile data services, e.g.,

TE; the anonymization of identities can be achieved by purchasing

he current available anonymous communication services, e.g., The

nion Router (TOR). The cost of the operation could be shared by

he app publisher and users and the data contributors could earn

redit by contributing their data. However, the detailed investiga-

ion is beyond the scope of this paper. 

We evaluated the energy consumption of the data encryption

nd wireless communication on mobile devices. The energy con-

umption was calculated using Android APIs [1] . In our experi-

ent, similar face recognition accuracy was achieved as the eval-

ation in Section 5.2.2 , but the figure of the recognition accuracy

s not presented due to the page limit. As the recognition accuracy

as been well evaluated in the previous section, we emphasize on

he evaluation of system cost in this section. 

We changed the number of proxies (intermediate mobile de-

ices) from 1 to 5 and the number of projections in each data

ector was 100 to evaluate the energy consumption of the mo-

ile devices when uploading data vector from data contributor to

he cloud server. As the results shown in Fig. 6 (a), the energy con-

umption increased with the growth of the number of proxies. For

xample, when 5 proxies were used in the Tor-like network, to-

al energy consumption of the 6 mobile devices (5 proxies and 1

ata contributor) was around 83 mWs (mJ). The average energy

onsumption of each mobile device was around 14 mWs (mJ) for

ploading each data vector. The battery capacity of common mod-
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ern smartphones is around 30 kWs (KJ), therefore, the energy cost

of each uploading only accounts to around 0.0 0 0 041% of the total

energy supply. We assume the smartphone has a targeted lifespan

of one day, which results in an energy budget of 1.25 KWs (KJ) per

hour. To put this into perspective, with only 1% of the budget per

hour, i.e., 12.5 Ws (J), P 

2 -SRC is able to perform uploading opera-

tions approximately 893 times per hour, i.e., upload around 15 data

vectors every minute. 

The application user uploaded both the compressed test vector

and returning trace to the cloud server via the Tor-like network.

When the cloud server received the test vector, it computed the

sparse representation of the test vector. Then the 200-dimensional

sparse representation vector was returned to the application user.

We evaluated the average response time of the cloud-enabled clas-

sification via different number of proxies (from 1 to 5). As the

results shown in Fig. 6 (b), the response time increased with the

growth of the number of proxies traversed. When 5 proxies are

used, the total response time to undertake one classification re-

quest with P 

2 -SRC was about 1.1 s. Though the system delay seems

non-negligible, considering the fact P 

2 -SRC achieves significantly

higher level of privacy than previous approaches, it is worth rea-

sonable sacrifice on time delay for highly-sensitive applications.

Meanwhile, the system delay can be tuned by changing the num-

ber of proxies to form the Tor-like network. For example, when

the mobile users are more trustworthy, we can largely reduce the

number of proxies involved to reduce the system delay. 

7. Conclusion 

In this paper, we propose a new privacy-preserving framework,

P 

2 -SRC, for classification in cloud-enabled mobile applications. P 

2 -

SRC is outstanding of the existing solutions by addressing different

types of privacy attacks including content privacy attacks, class la-

bel privacy attacks and source privacy attacks. As the evaluations

with different classification applications, user studies on a large

group of participants and real world system implementation, P 

2 -

SRC produces the best trade-off between the privacy protection

and recognition accuracy under reconstruction attack and the sys-

tem cost introduced is acceptable. 
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